GIANCARLO RICCIARDELLI D'ALBORE - CLAUDIA PIATTI

Dipartimento di Arboricoltura e Protezione delle Piante Università di Perugia

Gli Apoidei pronubi di specie spontanee officinali, commestibili e protette nell'Italia centrale*

ABSTRACT

THE APOIDEA POLLINATORS OF MEDICINAL, EDIBLE AND PROTECTED PLANTS IN CENTRAL ITALY

During ten years (1991-2000) some researches have been effected about Apoidea pollinators of n.180 medicinal, edible and protected wild plants, prevalently self-incompatible for genetic and/or structural reasons. The results of this research have showed all the Apoidea families have been represented, except Melittidae, which they live in the territory, but don't visit these studied species. All the plants take advantage of the visits of "generalists" and in some events also of "specialists" Apoidea. Moreover it is confirmed that the pollination service is very efficient, with the presence of many Apoidea species and in very variable percent. The survival of the plants, thanks to the cross by the pollinators, at this moment and in spite of the anthropic action, it may be considered sure.

Key words: wild bees, pollination, environment.

INTRODUZIONE

Gli studi relativi agli insetti impollinatori delle specie spontanee officinali, commestibili e protette non sono numerosi. Il più autorevole e recente trattato europeo sugli Apoidei che visitano i fiori del mondo vegetale è quello di Westrich (1990), mentre la necessità che la maggior parte delle Angiosperme abbia bisogno degli insetti impollinatori per riprodursi può ricondursi alle testimonianze di numerosi studiosi (East, 1940; Lewis, 1949; Brewbaker, 1957; Arasu, 1968; Mc Gregor, 1976; De Nettancourt, 1977; Faegri e Van Der Pijl, 1979; Pesson e Louveaux, 1984; Free, 1993;). In particolare Proctor *et al.* (1996) relazionano esaurientemente sui vari casi di incompatibilità nelle piante (incompatibilità gametofitica, sporofitica, eteromorfica, embrionale, ecc.), dovuti anche alle caratteristiche peculiari

Manoscritto accettato il 14 dicembre 2002.

^{*} Lavoro eseguito con il contributo del Progetto di Ateneo Byosist.

delle piante medesime (monoiche, dioiche, ginodioiche, androdioiche, ginomonoiche, andromonoiche o addirittura sterili all'origine), da cui emerge chiaramente che la sopravvivenza di non meno dell'85% delle Angiosperme è strettamente legata all'incrocio che viene assicurato dagli insetti pronubi. Occorre anche considerare che nei casi di compatibilità, l'azione degli insetti è comunque utile perché favorisce il rimescolamento del genotipo.

Nell'Italia centrale nel passato sono stati affrontati studi relativi agli insetti pronubi di alcune specie officinali, ma non di piante solo commestibili o protette (RICCIARDELLI D'ALBORE, 1983, 1984 a, b, c, d, 1986, 1988, 1993, 1995, 1996, 1997, 1999; RICCIARDELLI D'ALBORE *et al.*, 2000). Va comunque considerato che in molti casi una specie commestibile può anche essere considerata officinale (POMINI, 1990).

Recentemente è stato portato anche a termine un lavoro analogo, che però riguardava la famiglia delle Leguminosae (RICCIARDELLI D'ALBORE, 1993).

Considerato che gli insetti pronubi garantiscono la perpetuazione di molte specie vegetali e che quindi danno un apporto importante alla conservazione ed alla difesa dell'ambiente, è parso utile interessarsi per la prima volta in maniera abbastanza vasta ad un problema che aveva fino ad ora interessato molti studiosi, riscontrabili soprattutto in Proctor *et al.* (1996), ma non italiani nel nostro territorio.

Scopo della presente ricerca è pertanto quello di studiare quali insetti pronubi sono responsabili della sopravvivenza di specie spontanee che interessano l'uomo nell'Italia centrale. Lo studio si limita in questa fase ad interessarsi agli Apoidei, considerati generalmente gli insetti pronubi più importanti.

MATERIALI E METODI

Dall'inizio del 1991 a tutto il 2000, durante la fioritura delle specie vegetali considerate, sono state effettuate osservazioni giornaliere sugli Apoidei pronubi di n. 180 specie spontanee di interesse umano (officinali, commestibili e protette) che vegetavano in diverse località dell'Umbria, delle Marche e del Lazio, partendo dalle fasce altitudinali più basse [costa marina marchigiana, Lago di Corbara (PG)], attraverso l'agroecosistema di pianura e di collina, fino alle vette più alte dei Monti Sibillini e del Terminillo, per un totale di n. 50 stazioni di osservazione. Gli insetti venivano contati e in parte catturati per una loro successiva determinazione. Per ciascuna pianta sono state effettuate, nel lungo arco di tempo considerato, circa 150 osservazioni. Le piante, infine, spesso erano reperibili in più zone. I dati ottenuti per ciascuna pianta sono stati mediati a ricerca ultimata.

RISULTATI

Il quadro dei risultati (percentuali dei vari pronubi presenti sulle specie considerate) è sintetizzato nella tabella I. In base ad essa, considerando appunto gli Apoidei determinati (tab. II), si possono fare le seguenti considerazioni:

Colletidae: sono rappresentati da molte specie del genere *Hylaeus* (sottofamiglia Hylaeinae), ma non raggiungono di norma percentuali di presenza che superano il 25%. Del genere *Colletes* (sottofamiglia Colletinae) si ricordano *C. dimidiatus canescens* Smith e *C. succinctus* Linnaeus; il primo fedele alle Compositae, l'altro frequente sui fiori di *Calluna* ed *Hedera*. In ogni caso i Colletidi non visitano più di 35 specie tra tutte quelle considerate; il loro ruolo come impollinatori può considerarsi abbastanza modesto.

Andrenidae: scarsa la presenza del genere *Panurgus* (sottofamiglia Panurginae), sono invece molto numerose le specie del genere *Andrena* (sottofamiglia Andreninae), tra cui alcune oligolettiche, come *A. florea* Fabricius su *Bryonia*, *A. hattorfiana* Fabricius su *Knautia*, *A. humilis* Ihmhoff su Compositae, *A. lagopus* Latreille su Cruciferae, ecc. Nell'insieme visitano oltre 100 specie e sono presenti anche con percentuali che possono superare il 50%. Sono assidue visitatrici soprattutto delle Compositae Liguliflorae; in generale, considerato anche che sono provviste di apparati di raccolta più evoluti di quelli dei Colletidi, e data anche la loro frequenza, possono essere considerati impollinatori di importanza non indifferente, seppure piuttosto lenti nei loro movimenti.

Halictidae: di questa famiglia sono da tenere presenti, più che i generi *Dufourea e Systropha*, piuttosto rari, i generi *Halictus e Lasioglossum* (sottofamiglia Halictinae), molto comuni e numerosi, per lo più tutti polilettici, che visitano poco meno di 100 specie, talora con percentuali ragguardevoli; il loro ruolo come pronubi può considerarsi abbastanza simile a quello di Andrenidae.

Melittidae: la sottofamiglia Melittinae è rappresentata da specie tutte oligolettiche, che non erano presenti nell'indagine. Questa famiglia è stata pertanto omessa dalla tabella I.

Megachilidae: dei 14 generi delle sottofamiglie Lithurginae, Megachilinae, Osminae, Dyoxinae e Anthidinae sui fiori delle piante indagate sono stati reperiti 9 generi: *Chalicodoma, Megachile, Heriades, Hoplitis, Chelostoma, Osmia, Anthidium, Stelis* e *Anthocopa*; tra esse non poche specie sono oligolettiche; non visitano numerose piante (35) e raramente sono presenti con percentuali ragguardevoli; assicurano comunque un buon contributo all'impollinazione, soprattutto per quanto riguarda le specie specialiste e quelle molto veloci (*Anthidium, Osmia*, ecc.). In particolare, escludendo il primo genere citato,

Tab. I. Presenza (%) degli Apoidei sulle specie spontanee studiate.

SPECIE Acer platanoides L.	FAMIGLIA Aceraceae	OSO	COL	AND -	HAL -	MEG 27	ANT -	XYL	BOM 9	APIS 64
Achillea millefolium L.	Compositae	OC	13	13	13	41	1	1	\ I	20
Aconitum lamarckii Rchb.	Ranunculaceae	0	1	ı	ı	ı	ı	1	95	\sim
Agrimonia enpatoria L.	Rosaceae	OC	6	6	63	1	1	ı		19
Ajuga chamaepitys Schreber.	Labiatae	0	ı	1	ı	1	1	ı	82	18
Ajuga reptans L.	Labiatae	OC	1	1	ı	1	25		11	64
Alcea rosea L.	Malvaceae	0	1	6	6	1	1	1	1	82
Alchemilla vulgaris L.	Rosaceae	C	ı	10	06	ı	1	ı	1	ı
Alisma plantago-aquatica L.	Alismataceae	0	16	1	42	ı	1	ı	1	42
Alliaria petiolata (Bieb.) Cavara et Grande	Cruciferae	OC	_	10	10	1	1	ı		73
Allium schoenoprasum L.	Liliaceae	OC	1	\sim	15	1	1	1	1	80
Allium napolitanum Cirillo	Liliaceae	OP	1	\sim	15	1	1	1	1	80
Althaea officinalis L.	Malvaceae	0	ı	3	ı	ı	1	ı	47	50
Anchusa officinalis L.	Boraginaceae	OC	ı	ı	13	ı	33		27	20
Angelica archangelica L.	Umbelliferae	OC	ı	10	90	1	1	1	1	40
Aquilegia vulgaris L.	Ranunculaceae	0	ı	1	1	8	25	∞	17	42
Arbutus unedo L.	Ericaceae	00	ı	1	1	1	1	1	63	37
Arctium minus Bernh.	Compositae	00	ı	ı	ı	ı	ı	ı	45	55
Asparagus acutifolius L.	Liliaceae	OC	ı	ı	20	ı	ı	ı	ı	80
Asphodeline lutea (L.) Rchb.	Liliaceae	CP	ı	1	1	20	1	v	75	1
Aster alpinus L.	Compositae	Ь	10	30	20	1	1	ı	20	20
Ballota nigra L.	Labiatae	0	ı	1	1	6	1	ı	82	6
Bellis perennis L.	Compositae	OC	15	14	21	ı	ı	ı	ı	50
Berberis vulgaris L.	Berberidaceae	OCP	ı	1	ı	1	ı	1	22	78

SPECIE	FAMIGLIA	OSO	COL	AND	HAL	MEG	ANT	XXL	BOM	APIS
Borago officinalis L.	Boraginaceae	OC	ı	1	ı	ı	6	ı	6	82
Bryonia dioita Jacq.	Cucurbitaceae	0	ı	23	ı	ı	ı	ı	61	16
Bulbocodium vernum L.	Liliaceae	Ь	1	1	ı	1	ı	2	86	ı
Bunias erucago L.	Cruciferae	OC	45	10	45	ı	1	1	1	ı
Buxus semperiirens L.	Buxaceae	0	1	1	ı	ı	ı	ı	8	92
Calendula arvensis L.	Compositae	OC	1	42	17	8	1	1	1	33
Calluna vulgaris (L.) Hull.	Ericaceae	OP	29	12	ı	ı	ı	ı	47	12
Cahystegia sepium (L.) R. Br.	Convolvulaceae	0	ı	ı	33	ı	ı	ı	33	34
Campanula rapunculus L.	Campanulaceae	OC	ı	33	17	34	ı	ı	1	16
Capsella bursa-pastoris (L.) Medicus	Cruciferae	OC	33	34	33	1	1	1	1	1
Cardamine hirsuta L.	Cruciferae	OC	27	27	36	ı	1	1	1	10
Cardamine pratensis L.	Cruciferae	OC	27	27	36	ı	ı	ı	ı	10
Cardaria draba (L.) Desv.	Cruciferae	OC	20	20	30	ı	ı	ı	ı	30
Carduus spp.	Compositae	OC	ı	8	ı	23	ı	ı	54	15
Carlina utzka Hacq.	Compositae	00	ı	1	1	ı	1	\sim	06	\sim
Carlina acaulis L.	Compositae	00	ı	20	1	2	1	1	50	28
Centaurea cyanus L.	Compositae	00	6	∞	ı	ı	ı	ı	25	58
Centranthus ruber (L.) DC.	Gentianaceae	00	ı	11	ı	ı	18	ı	ν	99
Chelidonium majus L.	Papaveraceae	0	ı	1	1	ı	10	ı	30	09
Cichorium intybus L.	Compositae	00	ı	17	34	8	ı	ı	17	24
Cirsium arvense (L.) Scop.	Compositae	OC	∞	10	11	ı	ı	ı	_	64
Clematis vitalba L.	Ranunculaceae	ОС	ı	1	ı	16	ı	ı	17	29
Cnicus benedictus L.	Compositae	0	ı	1	30	\sim	ı	ı	ı	65
Colchicum antumnale L.	Liliaceae	0	ı	1	1	ı	ı	ı	27	73
Conium maculatum L.	Umbelliferae	0	1	30	32	1	1	1	1	38
Convallaria majalis L.	Liliaceae	0	1	1	27	1	1	1	1	73
Convolvulus arvensis L.	Convolvulaceae	0	33	17	33	6	ı	ı	ı	∞
Cornus mas L.	Cornaceae	OC	\sim	\sim	\sim	ı	ı	ı	ı	85
Cornus sanguinea L.	Cornaceae	0	ı	10	10	10	ı	ı	25	45
Coronilla emerus L.	Leguminosae	0	ı	ı	ı		22	3	37	38

SPECIE	FAMIGLIA	OSO	COL	AND	HAL	MEG	ANT	XXL	BOM	APIS
Crataegus monogyna Jacq.	Rosaceae	OC	ı	10	17	ı	1	ı	1	73
Crepis vesicaria L.	Compositae	OC	8	50	17	ı	1	1	1	25
Cynoglossum officinale L.	Boraginaceae	0	1	8	1	6	1		25	58
Cynoglossum magellense Ten.	Boraginaceae	Ь	1	1	1	1	1		100	1
Daphne laureola L.	Thymelaeaceae	0	1	1	1	1	1		95	\sim
Datura stramonium L.	Solanaceae	0	1	1	1	1	1		95	\sim
Delphinium spp.	Ranunculaceae	0	17	58	25	ı	1	ı	1	ı
Digitalis ferruginea L.	Scrophulariaceae	0	1	1	20	1	1		80	ı
Digitalis micrantha Roth.	Scrophulariaceae	0	1	1	6	1	1		91	ı
Diplotaxis erucoides (L.) DC.	Cruciferae	C	1	2	43	1	1		1	55
Diplotaxis tennifolia (L.) DC.	Cruciferae	OC	6	8	25	1	1		1	58
Dipsacus fullonum L.	Dipsacaceae	OC	ı	ı	1	ı	ı	10	78	12
Echallium elaterium (L.) A. Rich.	Cucurbitaceae	0	10	18	10	1	1	1	1	61
Echium vulgare L.	Boraginaceae	OC	1	6	∞	1	1		50	33
Epilobium hirsutum L.	Onagraceae	OC	1	1	ı	1	1		33	67
Eryngium amethystinum L.	Umbelliferae	OC	1	10	15	1	1		58	17
Eupatorium cannabinum L.	Compositae	0	1	10	15	ı	ı		17	58
Ferulago campestris (Besser) Grec.	Umbelliferae	0	1	14	31	ı	ı		4	51
Filipendula ulmaria (L.) Maxim.	Rosaceae	00	1	99	22	1	1		1	22
Fragaria vesta L.	Rosaceae	$^{\mathrm{CP}}$	10	10	10	1	1		1	70
Frangula alnus Miller	Rhamnaceae	0	1	1	1	1	1	1	1	100
Fumaria officinalis L.	Papaveraceae	00	1	ı	ı	1	ı	ı	9	94
Galega officinalis L.	Leguminosae	00	1	8	6	ı	1	ı	%	75
Gentiana lutea L.	Gentianaceae	OP	ı	4	\sim	ı	ı		73	18
Gentianella amarella (L.) Boerner	Gentianaceae	0	1	1	1	1	1	1	91	6
Geum urbanum L.	Rosaceae	OC	17	17	50	1	1	1	1	16
Glechoma hederacea L.	Labiatae	OC	1	1	ı	1	54	ı	16	30
Hedera belix L.	Araliaceae	0	22	10	31	1	ı	1	ı	37
Helianthus tuberosus L.	Compositae	OC	1	1	8	1	ı	1	25	67
Helleborus foetidus L.	Ranunculaceae	0	ı	10	10	ı	ı	ı	20	30

SPECIE	FAMIGLIA	OSO	COL	AND	HAL	MEG	ANT	XXL	BOM	APIS
Helleborus viridis L.	Rununculaceae	0	ı	1	ı	ı	ı	ı	82	18
Helichrysum stoechas (L.) Moench.	Compositae	0	25	30	40	\sim	1	ı	ı	ı
Heracleum sphondylium L.	Umbelliferae	OC	22	12	33	22	1	ı	1	11
Hieracium pilosella L.	Compositae	OC	1	54	15	16	1	ı	1	15
Hyosciamus niger L.	Solanaceae	0	1	32	45	1	1	ı	1	23
Hyoseris radiata L.	Compositae	C	19	54	19	1	1		1	8
Hypericum perforatum L.	Guttiferae	0	ı	∞	∞	ı	ı	ı	30	54
Hypochoeris radicata L.	Compositae	C	14	25	14	1	1	ı	1	47
Ilex aquifolium L.	Aquifoliaceae	Ь	10	10	33	1	1	ı	6	38
Inula viscosa (L.) Aiton	Compositae	0		∞	16	1	1	ı	18	58
Knantia arvensis (L.) Coulter	Dipsacaceae	OC	1	18	ı	1	1	ı	45	37
Laburnum anagyroides Medicus	Leguminosae	0	ı	1	ı	10	ı	ı	59	31
Lactuca virosa L.	Compositae	0	20	25	25	1	ı	ı	1	30
Lamium album L.	Labiatae	OC	ı	1	1	1	10	1	54	35
Lamium purpureum L.	Labiatae	OC	ı	1	1	1	1		91	6
Leontodon hispidus Scop. non L.	Compositae	OC	ı	53	1	1	1		1	47
Leopoldia comosa (L.) Parl.	Liliaceae	OC	ı	ı	ı	1	37	ı	1	63
Lilium bulbiferum L.	Liliaceae	OP	ı	10	20	10	10	10	30	10
Lilium martagon L.	Liliaceae	OP	ı	10	1	10	10	1	09	10
<i>Linaria vulgaris</i> Miller	Scrophulariaceae	00	ı	1	1	1	1	6	82	6
Lonicera caprifolium L.	Caprifoliaceae	0	1	1	1	∞	1	17	33	42
Lythrum salicaria L.	Lythraceae	00	ı	8	∞	ı	ı	ı	17	67
Matva sytvestris L.	Malvaceae	00	∞	8	ı	ı	ı	9	∞	70
Marrubium vulgare L.	Labiatae	OC	ı	∞	1	16	15	1	38	23
Matricaria chamomilla L.	Compositae	0	\sim	30	40	1	1	1	1	25
Menyanthes trifoliata L.	Menyanthaceae	0	1	1	1	1	1	1	1	100
Myosotis alpestris F. W. Schmidt	Boraginaceae	00	ı	ı	ı	6	ı	ı	6	82
Myrtus communis L.	Myrtaceae	OCP	ı	1	6	1	ı	1	6	82
Narcissus poëticus L.	Amaryllidaceae	OP	10	10	10	1	1	1	70	1
Nasturtium officinale R. Br.	Cruciferae	OC	10	30	10	20	1	1	1	30

SPECIE	FAMIGLIA	OSO	COL	AND	HAL	MEG	ANT	XXL	BOM	APIS
Nepeta cataria L.	Labiatae	OCP	1	1	ı	ı	ı	1	50	50
Nepeta nepetella L.	Labiatae	OC	1	1	ı	ı	ı	10	50	40
Nymphaea alba L.	Nymphaeaceae	OP	8	20	20	ı	1	1	1	52
Oenothera biennis L.	Onagraceae	OC	ı	1	ı	ı	1	8	42	50
Onopordum acanthium L.	Compositae	OC	1	1	17	∞	1	1	29	8
Ornithogalum umbellatum L.	Liliaceae	OC	27	18	27	10	1	1	1	18
Oxalis acetosella L.	Oxalidaceae	OC	ı	12	\sim	2	_	ı	ı	74
Paeonia officinalis L.	Paeoniaceae	OP	ı	1	ιΛ	ı	1	1	33	62
Papaver rhoeas L.	Papaveraceae	OC	1	14	10	9	1	1	∞	62
Pastinaca sativa L.	Umbelliferae	OC	1	20	20	10	1	1	1	50
Petasites hibrydus (L.) Gaertn.	Compositae	OC	1	8	1	1	1	1	17	75
Pieris echioides L.	Compositae	C	ı	20	50	ı	ı	ı	ı	30
Polygonatum multiflorum (L.) All.	Liliaceae	0	ı	1	4	ı	99	ı	ı	40
Pobygonum bistorta L.	Polygonaceae	OC	ı	8	1	ı	1	1	29	25
Portulaca oleracea L.	Portulacaceae	C	1	10	10	1	1	1	1	80
Potentilla reptans L.	Rosaceae	00	38	15	38	1	1	1	1	6
Primula vulgaris Hudson	Primulaceae	00	ı	ı	ı	ı	50	ı	50	ı
Prunella vulgaris L.	Labiatae	00	ı	ı	ı	26	16	ı	25	33
Prunus spinosa L.	Rosaceae	00	10	10	10	6	ı	∞	15	38
Pulmonaria officinalis L.	Boraginaceae	00	1	1	1	1	94	ı	4	2
Ranunculus bulbosus L.	Ranunculaceae	0	1	37	27	1	ı	ı	1	36
Ranunculus ficaria L.	Ranunculaceae	00	1	2	20	ı	ı	ı	18	09
Raphanus raphanistrum L.	Cruciferae	OC	17	8	17	ı	ı	ı	ı	58
Reichardia picroides (L.) Roth	Compositae	C	20	30	20	1	1	1	1	30
Reseda lutea L.	Resedaceae	0	1	8	1	6	ı	ı	∞	75
Reseda Inteola L.	Resedaceae	0	1	8	20	∞	ı	ı	ı	64
Rhinanthus alectorolophus (Scot.) Pollich.	Scrophulariaceae	0	ı	∞	ı	ı	ı	ı	75	17
Rosa canina L.	Rosaceae	OC	∞	8	ı	1	ı	ı	17	29
Rosa gallica L.	Rosaceae	OCP	∞	8	1	1	ı	ı	17	29
Rubus idaeus L.	Rosaceae	OC	ı	1	1	ı	1		80	20

SPECIE	FAMIGLIA	OSO	COL	AND	HAL	MEG	ANT	XXL	BOM	APIS
Rubus ulmifolius Schott	Rosaceae	OC	1	1	ı	1	ı	ı	20	80
Salix alba L.	Salicaceae	0	1	1	ı	6	ı	ı	6	82
Salix fragilis L.	Salicaceae	OP	1	ı	ı	6	ı		6	82
Salvia solarea L.	Labiatae	0	1	1	ı	31	ı	50	1	19
Salvia spp.	Labiatae	OC	1	1	ı	1	8	1	42	50
Sambucus ebulus L.	Caprifoliaceae	0	1	10	_	1	1	1	25	58
Saponaria officinalis L.	Caryophyllaceae	0	ı	1	10	ı	ı	16	16	58
Scrophularia nodosa L.	Scrophulariaceae	0	ı	1	1	1	1		06	10
Sempervirum arachnoideum L.	Crassulaceae	OCP	ı	1	25	1	1	ı	33	42
Silene alba (Miller) Krauser	Caryophyllaceae	00	10	10	10	1	30		1	40
Silene inflata (Salisb.) Sm.	Caryophyllaceae	00	13	23	64	1	1	ı	1	1
Silybum marianum (L.) Gaertn.	Compositae	00	ı	∞	54	ı	ı	ı	_	31
Smyrnium olusatrum L.	Umbelliferae	С	ı	8	30	1	1	1	1	62
Solanum dulcamara L.	Solanaceae	0	ı	1	1	1	1	ı	100	1
Solidago virga anrea L.	Compositae	00	ı	1	64	1	1		21	15
Sonchus asper (L.) Hill	Compositae	00	ı	29	16	1	1		1	17
Sonchus oleraceus L.	Compositae	OC	ı	57	26	ı	ı	ı	ı	17
Sorbus ancuparia L.	Rosaceae	OC	20	12	30	ı	1	1	ı	38
Stachys officinalis (L.) Trevisan	Labiatae	OC	ı	1	1	1	36	ı	46	18
Stellaria media (L.) Vill.	Caryophyllaceae	C	20	10	20	ı	1	ı	1	50
Symplytum officinale L.	Boraginaceae	OC	ı	1	1	ı	24	ı	16	09
Symplytum tuberosum L.	Boraginaceae	OC	ı	ı	ı	ı	17	ı	75	∞
Teucrium chamaedrys L.	Labiatae	0	ı	ı	ı	ı	ı	ı	73	27
Teucrium polium L.	Labiatae	0	ı	1	53	1	1	1	1	47
Thymus pulegioides L.	Labiatae	0	ı	1	1	18	10	ı	27	45
Tilia plathyphyllos Scop.	Tiliaceae	0	ı	1	1	ı	1	ı	13	87
Tragopogon pratensis L.	Compositae	OC	17	42	17	ı	ı	ı	24	1
Tulipa australis Link.	Liliaceae	Ь	ı	100	ı	ı	ı	ı	ı	1
Tussilago farfara L.	Compositae	0C	20	20	20	1	1	1	1	40
Urospermum dalechampi (L.) Schmid.	Compositae	С	∞	26	46	1	ı	1	ı	20

SPECIE		FAMIGLIA	OSO	COL	COL AND	HAL	MEG	ANT	XXL	HAL MEG ANT XYL BOM	APIS
Valeriana officinalis L.	ï	Valerianaceae	0	8	17	6	ı			25	
Valeriana tuberosa L.		Valerianaceae	0	ı	11	34	ı			44	11
Verbascum thapsus L.	i	Scrophulariaceae	OC	1	6	ı	ı	1	1	27	64
Verbena officinalis L.		Verbenaceae	OC	1	1	ı	1	1	1	1	100
Veronica beccabunga L	ľ.	Scrophulariaceae	OC	23	28	29	1	1	1	1	20
Viola odorata L.		Violaceae	OC	ı	1	1	ı	40	ı	8	52
Vitex agnus -castus L.	ن	Verbenaceae	0	ı	13	ı	ı		15	28	44
Legenda:	USO = O (Specie officinale); C (Specie commestibile); P (Specie protetta) COL = Colletidae AND = Andrenidae HAL = Halictidae MEG = Megachilidae ANY = Anthophoridae XYL = Xylovopa Spp. BOM = Bombus e Psithynus Spp. APIS = Apis mellifera ligustica Spin.	le), C (Specie comm	estibile)	; P (Spe	scie pro	tetta).					

Tab. II. Gli Apoidei pronubi delle specie vegetali studiate

Colletidae Hylaeinae

Hylaeus brevicornis Nylander
H. communis Nylander
H. confusus Nylander
H. leptocephalus Morawitz
H. nigritus Fabricius
H. punctatus Brullè
H. signatus Panzer

Colletinae

Colletes davesianus davesianus Smith

C. succinctus Linnaeus

Andrenidae Andreninae

Andrena agilissima Scopoli

A. barbareae Panzer A. bicolorata Rossi

A. combinata Christ

A. congruens Schmiedeknecht

A. dorsata Kirby

A. flavipes Panzer
A. florea Fabricius

A. florentina Magretti

A. fulva Mueller

A. hattorfiana Fabricius

A. humilis Imhoff

A. lagopus Latreille

4 ' / 1 17: 1---

A. minutula Kirby
A. ovatula Kirby

A. schenki Morawitz

A. stabiana Morice

4 :11 11 17: 1

A. wilkella Kirby

Panurginae

Panurgus banksianus Kirby P. calcaratus Scopoli P. dentipes Latreille

Halictidae Halictinae

Halictus fulvipes Klug

H. maculatus Smith

H. quadricinctus Fabricius

H. scabiosae Rossi H. subauratus Rossi

H. tumulorum Linnaeus

Lasioglossum costulatum Kriechbaumer

L. discum Smith

L. leucozonium Schrank

L. puncticolle Morawitz

L. sexnotatum Kirby

L. zonulum Smith

L. calceatum Scopoli

L. fulvicorne Kirby

L. interruptum Panzer

L. lineare Schenk

L. parvulum Schenk

L. villosulum Kirby

Megachilidae Lithurginae

Lithurgus cornutus Panzer

Megachilinae

Chalicodoma apennina Benoist

C. parietina Geoffroy in Fourcroy

Megachile centuncularis Linnaeus

M. circumcincta Kirby

M. flabellipes Pèrez

M. genalis Morawitz

M. lagopoda Linnaeus

M. melanopyga Costa

M. pilicrus Morawitz

M. willughbiella Kirby

Osminae

Chelostoma florisomne Linnaeus

C. rapunculi Lepeletier

Heriades crenulatus Nylander

H. truncorum Linnaeus

Anthocopa andrenoides Spinola

A. scutellaris Morawitz

Hoplitis acuticornis Dufour & Perris

H. adunca Panzer

H. anthocopoides Schenk

H. leucomelana Kirby

H. mitis Nylander

Osmia bicolor Schrank

O. brevicornis Fabricius

O. caerulescens Linnaeus

O. cornuta Latreille

O. fulviventris Panzer

O. leaiana Kirby

O. rufa cornigera Rossi

Anthidinae

Anthidium manicatum Linnaeus

A. oblongatum Illiger

A. punctatum Latreille

Stelis annulata Lepeletier

S. ornatula Klug

Anthophoridae

Anthophorinae

Anthophora crinipes Smith

A. plumipes Pallas

A. pubescens Fabricius

Amegilla albigena Lepeletier

A. quadrifasciata De Villers

Eucera clypeata Erichson

E. interrupta Baer

E. longicornis Linnaeus

Xylocopinae

Xylocopa iris Latreille

X. valga Gerstaecker

X. violacea Linnaeus

Ceratina chalybea Chevrier

C. cucurbitina Rossi

Apidae

Bombinae

Bombus hortorum hortorum Latreille

B. humilis appeninus Vogt

B. humilis propeaurantiacus Vogt

B. lapidarius lapidarius Linnaeus

B. lapidarius decipiens Pérez

B. lucorum lucorum Linnaeus

B. mesomelas mesomelas Gerstaecker

B. monticola konradini Reinig

B. mucidus mollis Pérez

B. pascuorum melleofacies Vogt

B. pratorum pratorum Linnaeus

B. ruderarius ruderarius Mueller

B. ruderarius montanus Lepeletier

B. ruderatus atrocorbiculosus Vogt

B. ruderatus eurynotus Dalla Torre

B. soroensis lectitatus Kruseman

B. subterraneus latreillelus Kirby

B. subterraneus liguriensis Rasmont

B. sylvarum sylvarum Linnaeus

B. sylvarum rogenhoferi Dalla Torre

B. terrestris terrestris Linnaeus

B. terrestris ferrugineus Schmiedeknecht

Psithyrus campestris campestris Panzer

P. maxillosus maxillosus Klug

P. maxillosus italicus Gruette

P. rupestris rupestris Fabricius

P. rupestris siculus Reinig

P. sylvestris Lepeletier

P. vestalis obenbergeri May

Apinae

Apis mellifera ligustica Spinola

polilettico, *Megachile pilicrus* Morawitz è fedele alle Compositae, *Heriades truncorum* Linnaeus e *H. crenulatus* Spinola visitano anch'esse le Compositae, *Hoplitis adunca* Panzer è specialista sul genere *Echium*, così come *H. anthocopoides* Schenk; *H. mitis* Nylander visita sempre il genere *Campanula*; *Chelostoma rapunculi* Lepeletier è fedele al genere *Campanula*; *Osmia fulviventris* Panzer è sulle Compositae, così come *O. leaiana* Kirby. *Anthidium* spp. sono velocissime, polilettiche, ma anche frequenti sulle Boraginaceae, Resedaceae e Scrophulariaceae. Nel genere *Anthocopa* troviamo *A. andrenoides* Spinola, che vola solo sulle Labiatae, *A. spinulosa* Kirby invece sulle Compositae.

Anthophoridae: le 2 sottofamiglie Anthophorinae e Xylocopinae (quest'ultima da alcuni sistematici annessa alla famiglia di Apidae) sono composte in totale da 10 generi di cui solo 4 ritrovati con una certa frequenza in questa indagine; le specie di questi generi amano soprattutto fiori con corolla lunga, considerata anche la non indifferente lunghezza della loro ligula (soprattutto in *Anthophora*, *Amegilla* ed *Eucera*). Non visitano molte delle specie considerate, preferendo, anche con punte notevoli, quelle delle famiglie Boraginaceae, Labiatae, Liliaceae e Leguminosae. Le specie visitate usufruiscono di un ottimo servizio pronubo, poiché questi impollinatori sono molto sistematici nella visita dei fiori di una pianta e sono estremamente veloci, capaci quindi di visitare in una stessa unità di tempo un numero di fiori ben superiore a quello di altri Apoidei (fa eccezione il genere *Xylocopa*, piuttosto lento nei movimenti).

Apidae: trattasi dei ben noti Bombus (compresi i loro parassiti sociali Psithyrus) e dell'ape domestica. Dei primi, tra sottospecie ed ibridi, sono stati reperiti oltre 30 diversi. Sono molto veloci e considerata la loro mole sono costretti a visitare un gran numero di fiori per completare in un viaggio il loro raccolto; sono pertanto da considerarsi pronubi eccellenti. Visitano poco più di 100 delle specie considerate ed in alcuni casi raggiungono percentuali vicine al 100%. In alcune situazioni si sono rivelati i soli pronubi responsabili della conservazione della specie (Solanum dulcamara L.). I Bombus sono molto numerosi in ambienti poco antropizzati (pascoli naturali, zone montagnose, ecc.); le api sono per lo più ubiquitarie, essendo molto diffusa l'apicoltura, ed avendo esse il vantaggio di godere della protezione dell'uomo, che le alleva, limitandone il più possibile le avversità; privilegio purtroppo non concesso agli Apoidei selvatici. Le api visitano la maggior parte delle specie vegetali prese in considerazione nella presente ricerca; trascurano solo i fiori dotati di corolla troppo lunga per l'accesso al nettare; in qualche caso comunque anche sui fiori così strutturati le api raccolgono il polline (Digitalis, Lamium, Pulmonaria, Primula, ecc.).

DISCUSSIONE

Queste sintetiche considerazioni sugli Apoidei reperiti nella presente indagine, sulla loro frequenza e sul comportamento, permettono di affermare che almeno per ora le specie prese in considerazione non presentano problemi di sopravvivenza dovuta alla eventuale carenza di impollinatori, comprese le poche piante protette esaminate; i problemi della conservazione delle piante officinali, commestibili e protette sono più legati all'azione dell'uomo (raccolta indiscriminata senza il rispetto di alcuna regola). In questa ottica, nonostante la pressione dell'uomo, la vita di queste piante può considerarsi al sicuro, sebbene non sia noto ancora per quanto tempo. È necessario comunque tener anche presente che, al di fuori di casi ben individuabili e soprattutto per quanto attiene alle piante protette, gran parte delle piante prese in esame allo stato attuale delle cose sono infestanti e, seppure l'uomo le combatta con gli erbicidi sulle colture agrarie, negli ambienti più o meno naturali prosperano tranquillamente.

I dati sugli Apoidei ottenuti in oltre 10 anni di ricerche stanno a testimoniare che tutto sommato l'azione pronuba è ancora largamente assicurata.

In ultima analisi i risultati ottenuti consentono di conoscere meglio quali e quanti sono i pronubi delle piante considerate, di interesse umano, di cui fino ad ora non si avevano molte conoscenze.

CONCLUSIONI

Sulla base dei risultati ottenuti e della discussione che ne è scaturita si può pervenire sinteticamente alle seguenti conclusioni.

La sopravvivenza di tutto il mondo vegetale è legata a tanti fattori; le avversità di ordine naturale influenzano la diffusione o restrizione delle specie (dinamica vegetazionale). L'uomo può incidere in maniera anche drastica sul destino delle piante; nell'indagine in questione sono state appunto prese in considerazione piante il cui futuro potrebbe rivelarsi incerto, perché legate in qualche modo alla presenza ed all'azione dell'uomo. Le specie protette sono tali proprio perché il rischio della loro estinzione è purtroppo la conseguenza di una loro raccolta indiscriminata. Le specie commestibili per tradizione sono ancora raccolte soprattutto dalla gente di campagna e di montagna, ma la tendenza ad un sano ritorno alla natura fa prevedere che in futuro esse vengano raccolte in maniera più intensiva. Le piante officinali, almeno quelle più utilizzate in Erboristeria, possono anch'esse trovarsi a rischio.

I risultati della presente ricerca dimostrano che i responsabili della riproduzione di queste specie (pronubi) sono ben presenti e che sotto questo aspetto non si profila per ora nessun problema. Se l'uomo si convincerà che gli ecosistemi rimangono in relativo equilibrio solo se l'azione antropica è ridotta al minimo, per l'ambiente si potrà profilare un futuro tranquillo.

In ogni caso a prescindere dai problemi sopra accennati la presente ricerca può considerarsi utile anche per i ricercatori in Apidologia nell'ottica di fare sempre più luce sulla presenza, comportamento ed utilità degli Apoidei nei nostri territori.

RIASSUNTO

Durante dieci anni (1991-2000) sono state svolte ricerche sugli Apoidei pronubi di n. 180 specie spontanee officinali, commestibili e protette, prevalentemente autoincompatibili, per ragioni genetiche e/o strutturali. I risultati di questa indagine hanno dimostrato che tutte le famiglie di Apoidei sono rappresentate, ad eccezione di Melittidae, che vivono nel territorio, ma non visitano le specie studiate. Tutte le piante usufruiscono delle visite di Apoidei "generalisti" ed in alcuni casi anche di "specialisti". È dimostrato inoltre che il servizio pronubo è molto efficiente, con la presenza di numerose specie di Apoidei ed in percentuale molto variabile. La sopravvivenza delle piante, grazie all'incrocio provocato dagli insetti impollinatori, al momento e nonostante l'azione antropica, può considerarsi assicurata.

Parole chiave: Pronubi selvatici, impollinazione, ambiente.

BIBLIOGRAFIA

ARASU N.J., 1968 - Self-incompatibility in angiosperms: a review. Genetica, 39: 11-24.

Brewbaker J.L., 1957 - Pollen and self-incompatibility systems in plants. J. Hered., 48: 271-277.

DE NETTANCOURT D., 1977 - Incompatibility in angiosperms. Spring. Vlg. New York, 273 pp.

East E.M., 1940 - The distribution of self-sterility in the flowering plants. *Proc. Am. Philosoph. Soc.*, 82 (4): 449-519.

Faegri K., Van Der Pijl J., 1979 - The principle of pollination ecology. Pergamon Press, Oxford UK., 244 pp.

Free J.B., 1993 - Insect pollination of crops. Academic Press, London, 684 pp.

LEWIS D., 1949 - Incompatibility in flowering plants. Biol. Rev., 24: 472-496.

Mc Gregor S.E., 1976 - Insect pollination of cultivated crop plants. U. S. Dep. Agric. Handbook; 1-18.

Pesson P., Louveaux J., 1984 - Pollinisation et production végétales. INRA Paris: 63-87.

Pomini L., 1990 - Erboristeria italiana. Ed. Vitalità, 1140 pp.

PROCTOR M., YEO P., LACK A., 1996 - The natural history of pollination. Harper Collins Pub., 479 pp.

RICCIARDELLI D'ALBORE G., 1983 - Osservazioni sugli insetti impollinatori di alcune Labiate di interesse erboristico (*Origanum majorana* L., *Origanum vulgare* L., *Rosmarinus* officinalis L., Salvia officinalis L. e Salvia sclarea L.) in un areale specializzato. Redia, LXVI:

- 283-293.
- RICCIARDELLI D'ALBORE G., 1984a Osservazioni sugli insetti impollinatori di alcune Labiate di interesse erboristico (*Acinos suaveolens* G. Don Fil., *Hyssopus officinalis* L., *Lavandula angustifolia* Miller, *Leonurus_cardiaca* L. e *Marrubium vulgare* L.) in un areale specializzato. *Apicoltore Moderno*, 75(2): 77-85.
- RICCIARDELLI D'ALBORE G., 1984b Osservazioni sugli insetti impollinatori di *Atropa belladonna* L., *Digitalis purpurea* L., *D. lanata*_Ehrh., *Valeriana officinalis* L. in un areale specializzato. *Apicoltore Moderno*, 75: 165-172.
- RICCIARDELLI D'ALBORE G., 1984c Osservazioni sugli insetti impollinatori di alcune essenze di interesse erboristico (*Melissa officinalis* L., *Mentha viridis* Auct., *Mentha rotundifolia* Hudson, *Mentha pulegium* L., *Mentha piperita* L.) in un areale specializzato. *Annali della Facoltà di Agraria di Perugia*, XXXVII: 163-174.
- RICCIARDELLI D'ALBORE G., 1984d Osservazioni sugli insetti impollinatori di *Allium* porrum L., Eucalyptus camaldulensis Dehnh., Myrtus communis L., Myrtus communis L. v. maritima, Ruta graveolens L., Aesculus hyppocastanum L., Phacelia tanacetifolia Benth. in un areale specializzato. Redia, LXVII: 205-218.
- RICCIARDELLI D'ALBORE G., 1986 Les insectes pollinisateurs de quelques Ombellifères d'intéret agricole et condimentaire (*Angelica archangelica* L., *Carum carvi* L., *Petroselinum crispum* A. W. Hill., *Apium graveolens* L., *Pimpinella anisum* L., *Daucus carota* L., *Foeniculum_vulgare* Miller v. *azoricum* Thell.). *Apidologie*, 17 (2): 107-124.
- RICCIARDELLI D'ALBORE G., 1988 Osservazioni sugli insetti impollinatori di alcune piante di interesse erboristico (*Thymus vulgaris*_L., *T. pulegioides* L., *Satureja hortensis* L., *S. montana* L.). Redia, LXXI: 281-289.
- RICCIARDELLI D'ALBORE G., 1993 Pollinators of some wild and cultivated forage Leguminosae in Central Italy. *Entomologica*, XXVII: 125-137.
- RICCIARDELLI D'ALBORE G., 1995 Gli insetti impollinatori di *Pastinaca sativa* L. nel Parco Naz. dei M. Sibillini. *L'Ape nostra Amica*, 4: 41-42.
- RICCIARDELLI D'ALBORE G., 1996 Gli insetti impollinatori della genziana maggiore (*Gentiana lutea* L.) nel Parco Nazionale dei Monti Sibillini (Italia centrale). *L'Ape nostra amica*, 5: 26-29.
- RICCIARDELLI D'ALBORE G., 1997 Gli insetti impollinatori della cicoria (*Cichorium intybus* L.) nel Parco Nazionale dei Monti Sibillini. *L'Ape nostra amica*, 2: 34-36.
- RICCIARDELLI D'ALBORE G., 1999 Gli insetti impollinatori dell'uva spina (Ribes grossularia L.). L'Ape nostra amica, 5: 40-43.
- RICCIARDELLI D'ALBORE G., PIATTI C., MENGHINI A., 2000 Gli insetti impollinatori dell'erba moscatella (*Salvia sclarea* L.) e la loro incidenza sulla produzione del seme. *L'Ape nostra amica*, 6: 38-42.
- WESTRICH P., 1990 Die Wildbienen Baden-Wuertembergs. Ulmer Vlg. Stuttgart 1-2, 972 pp.